Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurosurg ; : 1-11, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38626474

RESUMO

OBJECTIVE: The free-water correction algorithm (Freewater Estimator Using Interpolated Initialization [FERNET]) can be applied to standard diffusion tensor imaging (DTI) tractography to improve visualization of subcortical bundles in the peritumoral area of highly edematous brain tumors. Interest in its use for presurgical planning in purely infiltrative gliomas without peritumoral edema has never been evaluated. Using subcortical maps obtained with direct electrostimulation (DES) in awake surgery as a reference standard, the authors sought to 1) assess the accuracy of preoperative DTI-based tractography with FERNET in a series of nonedematous glioma patients, and 2) determine its potential usefulness in presurgical planning. METHODS: Based on DES-induced functional disturbances and tumor topography, the authors retrospectively reconstructed the putatively stimulated bundles and the peritumoral tracts of interest (various associative and projection pathways) of 12 patients. The tractography data obtained with and without FERNET were compared. RESULTS: The authors identified 21 putative tracts from 24 stimulation sites and reconstituted 49 tracts of interest. The number of streamlines of the putative tracts crossing the DES area was 26.8% higher (96.04 vs 75.75, p = 0.016) and their volume 20.4% higher (13.99 cm3 vs 11.62 cm3, p < 0.0001) with FERNET than with standard DTI. Additionally, the volume of the tracts of interest was 22.1% higher (9.69 cm3 vs 7.93 cm3, p < 0.0001). CONCLUSIONS: Free-water correction significantly increased the anatomical plausibility of the stimulated fascicles and the volume of tracts of interest in the peritumoral area of purely infiltrative nonedematous gliomas. Because of the functional importance of the peritumoral zone, applying FERNET to DTI could have potential implications on surgical planning and the safety of glioma resection.

2.
Acta Neurochir (Wien) ; 165(6): 1675-1681, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37129683

RESUMO

Peritumoral edema prevents fiber tracking from diffusion tensor imaging (DTI). A free-water correction may overcome this drawback, as illustrated in the case of a patient undergoing awake surgery for brain metastasis. The anatomical plausibility and accuracy of tractography with and without free-water correction were assessed with functional mapping and axono-cortical evoked-potentials (ACEPs) as reference methods. The results suggest a potential synergy between corrected DTI-based tractography and ACEPs to reliably identify and preserve white matter tracts during brain tumor surgery.


Assuntos
Neoplasias Encefálicas , Substância Branca , Humanos , Imagem de Tensor de Difusão/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/cirurgia , Substância Branca/patologia , Vigília , Água , Mapeamento Encefálico/métodos , Encéfalo/patologia
3.
bioRxiv ; 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37215003

RESUMO

Visualization of fiber tracts around the tumor is critical for neurosurgical planning and preservation of crucial structural connectivity during tumor resection. Biophysical modeling approaches estimate fiber tract orientations from differential water diffusivity information of diffusion MRI. However, the presence of edema and tumor infiltration presents a challenge to visualize crossing fiber tracts in the peritumoral region. Previous approaches proposed free water modeling to compensate for the effect of water diffusivity in edema, but those methods were limited in estimating complex crossing fiber tracts. We propose a new cascaded multi-compartment model to estimate tissue microstructure in the presence of edema and pathological contaminants in the area surrounding brain tumors. In our model (COMPARI), the isotropic components of diffusion signal, including free water and hindered water, were eliminated, and the fiber orientation distribution (FOD) of the remaining signal was estimated. In simulated data, COMPARI accurately recovered fiber orientations in the presence of extracellular water. In a dataset of 23 patients with highly edematous brain tumors, the amplitudes of FOD and anisotropic index distribution within the peritumoral region were higher with COMPARI than with a recently proposed multi-compartment constrained deconvolution model. In a selected patient with metastatic brain tumor, we demonstrated COMPARI's ability to effectively model and eliminate water from the peritumoral region. The white matter bundles reconstructed with our model were qualitatively improved compared to those of other models, and allowed the identification of crossing fibers. In conclusion, the removal of isotropic components as proposed with COMPARI improved the bio-physical modeling of dMRI in edema, thus providing information on crossing fibers, thereby enabling improved tractography in a highly edematous brain tumor. This model may improve surgical planning tools to help achieve maximal safe resection of brain tumors.

4.
Sci Rep ; 13(1): 963, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653382

RESUMO

In malignant primary brain tumors, cancer cells infiltrate into the peritumoral brain structures which results in inevitable recurrence. Quantitative assessment of infiltrative heterogeneity in the peritumoral region, the area where biopsy or resection can be hazardous, is important for clinical decision making. Here, we derive a novel set of Artificial intelligence (AI)-based markers capturing the heterogeneity of tumor infiltration, by characterizing free water movement restriction in the peritumoral region using Diffusion Tensor Imaging (DTI)-based free water volume fraction maps. We leverage the differences in the peritumoral region of metastasis and glioblastomas, the former consisting of vasogenic versus the latter containing infiltrative edema, to extract a voxel-wise deep learning-based peritumoral microenvironment index (PMI). Descriptive characteristics of locoregional hubs of uniformly high PMI values are then extracted as AI-based markers to capture distinct aspects of infiltrative heterogeneity. The proposed markers are utilized to stratify patients' survival and IDH1 mutation status on a population of 275 adult-type diffuse gliomas (CNS WHO grade 4). Our results show significant differences in the proposed markers between patients with different overall survival and IDH1 mutation status (t test, Wilcoxon rank sum test, linear regression; p < 0.01). Clustering of patients using the proposed markers reveals distinct survival groups (logrank; p < 10-5, Cox hazard ratio = 1.82; p < 0.005). Our findings provide a panel of markers as surrogates of infiltration that might capture novel insight about underlying biology of peritumoral microstructural heterogeneity, providing potential biomarkers of prognosis pertaining to survival and molecular stratification, with applicability in clinical decision making.


Assuntos
Edema Encefálico , Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Imagem de Tensor de Difusão , Inteligência Artificial , Edema Encefálico/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Microambiente Tumoral
5.
Sci Rep ; 11(1): 14469, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34262079

RESUMO

Tumor types are classically distinguished based on biopsies of the tumor itself, as well as a radiological interpretation using diverse MRI modalities. In the current study, the overarching goal is to demonstrate that primary (glioblastomas) and secondary (brain metastases) malignancies can be differentiated based on the microstructure of the peritumoral region. This is achieved by exploiting the extracellular water differences between vasogenic edema and infiltrative tissue and training a convolutional neural network (CNN) on the Diffusion Tensor Imaging (DTI)-derived free water volume fraction. We obtained 85% accuracy in discriminating extracellular water differences between local patches in the peritumoral area of 66 glioblastomas and 40 metastatic patients in a cross-validation setting. On an independent test cohort consisting of 20 glioblastomas and 10 metastases, we got 93% accuracy in discriminating metastases from glioblastomas using majority voting on patches. This level of accuracy surpasses CNNs trained on other conventional DTI-based measures such as fractional anisotropy (FA) and mean diffusivity (MD), that have been used in other studies. Additionally, the CNN captures the peritumoral heterogeneity better than conventional texture features, including Gabor and radiomic features. Our results demonstrate that the extracellular water content of the peritumoral tissue, as captured by the free water volume fraction, is best able to characterize the differences between infiltrative and vasogenic peritumoral regions, paving the way for its use in classifying and benchmarking peritumoral tissue with varying degrees of infiltration.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/secundário , Aprendizado Profundo , Imagem de Difusão por Ressonância Magnética/métodos , Glioblastoma/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/patologia , Feminino , Glioblastoma/patologia , Glioblastoma/secundário , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Microambiente Tumoral , Adulto Jovem
6.
Neurosurgery ; 89(2): 246-256, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33913502

RESUMO

BACKGROUND: A limitation of diffusion tensor imaging (DTI)-based tractography is peritumoral edema that confounds traditional diffusion-based magnetic resonance metrics. OBJECTIVE: To augment fiber-tracking through peritumoral regions by performing novel edema correction on clinically feasible DTI acquisitions and assess the accuracy of the fiber-tracks using intraoperative stimulation mapping (ISM), task-based functional magnetic resonance imaging (fMRI) activation maps, and postoperative follow-up as reference standards. METHODS: Edema correction, using our bi-compartment free water modeling algorithm (FERNET), was performed on clinically acquired DTI data from a cohort of 10 patients presenting with suspected high-grade glioma and peritumoral edema in proximity to and/or infiltrating language or motor pathways. Deterministic fiber-tracking was then performed on the corrected and uncorrected DTI to identify tracts pertaining to the eloquent region involved (language or motor). Tracking results were compared visually and quantitatively using mean fiber count, voxel count, and mean fiber length. The tracts through the edematous region were verified based on overlay with the corresponding motor or language task-based fMRI activation maps and intraoperative ISM points, as well as at time points after surgery when peritumoral edema had subsided. RESULTS: Volume and number of fibers increased with application of edema correction; concordantly, mean fractional anisotropy decreased. Overlay with functional activation maps and ISM-verified eloquence of the increased fibers. Comparison with postsurgical follow-up scans with lower edema further confirmed the accuracy of the tracts. CONCLUSION: This method of edema correction can be applied to standard clinical DTI to improve visualization of motor and language tracts in patients with glioma-associated peritumoral edema.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Imagem de Tensor de Difusão , Edema/diagnóstico por imagem , Edema/etiologia , Glioma/complicações , Glioma/diagnóstico por imagem , Glioma/cirurgia , Humanos , Imageamento por Ressonância Magnética
7.
PLoS One ; 15(5): e0233645, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32469944

RESUMO

Characterization of healthy versus pathological tissue in the peritumoral area is confounded by the presence of edema, making free water estimation the key concern in modeling tissue microstructure. Most methods that model tissue microstructure are either based on advanced acquisition schemes not readily available in the clinic or are not designed to address the challenge of edema. This underscores the need for a robust free water elimination (FWE) method that estimates free water in pathological tissue but can be used with clinically prevalent single-shell diffusion tensor imaging data. FWE in single-shell data requires the fitting of a bi-compartment model, which is an ill-posed problem. Its solution requires optimization, which relies on an initialization step. We propose a novel initialization approach for FWE, FERNET, which improves the estimation of free water in edematous and infiltrated peritumoral regions, using single-shell diffusion MRI data. The method has been extensively investigated on simulated data and healthy dataset. Additionally, it has been applied to clinically acquired data from brain tumor patients to characterize the peritumoral region and improve tractography in it.


Assuntos
Edema Encefálico/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Água/análise , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Edema Encefálico/complicações , Neoplasias Encefálicas/complicações , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
J Med Imaging (Bellingham) ; 5(1): 011018, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29340286

RESUMO

The growth of multiparametric imaging protocols has paved the way for quantitative imaging phenotypes that predict treatment response and clinical outcome, reflect underlying cancer molecular characteristics and spatiotemporal heterogeneity, and can guide personalized treatment planning. This growth has underlined the need for efficient quantitative analytics to derive high-dimensional imaging signatures of diagnostic and predictive value in this emerging era of integrated precision diagnostics. This paper presents cancer imaging phenomics toolkit (CaPTk), a new and dynamically growing software platform for analysis of radiographic images of cancer, currently focusing on brain, breast, and lung cancer. CaPTk leverages the value of quantitative imaging analytics along with machine learning to derive phenotypic imaging signatures, based on two-level functionality. First, image analysis algorithms are used to extract comprehensive panels of diverse and complementary features, such as multiparametric intensity histogram distributions, texture, shape, kinetics, connectomics, and spatial patterns. At the second level, these quantitative imaging signatures are fed into multivariate machine learning models to produce diagnostic, prognostic, and predictive biomarkers. Results from clinical studies in three areas are shown: (i) computational neuro-oncology of brain gliomas for precision diagnostics, prediction of outcome, and treatment planning; (ii) prediction of treatment response for breast and lung cancer, and (iii) risk assessment for breast cancer.

9.
Neurosurgery ; 80(4): 635-645, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28362934

RESUMO

BACKGROUND: Diffuse low-grade gliomas (DLGGs) represent several pathological entities that infiltrate and invade cortical and subcortical structures in the brain. OBJECTIVE: To describe methods for rapid prototyping of DLGGs and surgically relevant anatomy. METHODS: Using high-definition imaging data and rapid prototyping technologies, we were able to generate 3 patient DLGGs to scale and represent the associated white matter tracts in 3 dimensions using advanced diffusion tensor imaging techniques. RESULTS: This report represents a novel application of 3-dimensional (3-D) printing in neurosurgery and a means to model individualized tumors in 3-D space with respect to subcortical white matter tract anatomy. Faculty and resident evaluations of this technology were favorable at our institution. CONCLUSION: Developing an understanding of the anatomic relationships existing within individuals is fundamental to successful neurosurgical therapy. Imaging-based rapid prototyping may improve on our ability to plan for and treat complex neuro-oncologic pathology.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Glioma/diagnóstico por imagem , Modelos Anatômicos , Impressão Tridimensional , Substância Branca/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/cirurgia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Imagem de Tensor de Difusão/métodos , Glioma/patologia , Glioma/cirurgia , Humanos , Procedimentos Neurocirúrgicos , Substância Branca/patologia , Substância Branca/cirurgia
10.
Neurosurgery ; 79(4): 568-77, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26678299

RESUMO

BACKGROUND: Advances in white matter tractography enhance neurosurgical planning and glioma resection, but white matter tractography is limited by biological variables such as edema, mass effect, and tract infiltration or selection biases related to regions of interest or fractional anisotropy values. OBJECTIVE: To provide an automated tract identification paradigm that corrects for artifacts created by tumor edema and infiltration and provides a consistent, accurate method of fiber bundle identification. METHODS: An automated tract identification paradigm was developed and evaluated for glioma surgery. A fiber bundle atlas was generated from 6 healthy participants. Fibers of a test set (including 3 healthy participants and 10 patients with brain tumors) were clustered adaptively with this atlas. Reliability of the identified tracts in both groups was assessed by comparison with 2 experts with the Cohen κ used to quantify concurrence. We evaluated 6 major fiber bundles: cingulum bundle, fornix, uncinate fasciculus, arcuate fasciculus, inferior fronto-occipital fasciculus, and inferior longitudinal fasciculus, the last 3 tracts mediating language function. RESULTS: The automated paradigm demonstrated a reliable and practical method to identify white mater tracts, despite mass effect, edema, and tract infiltration. When the tumor demonstrated significant mass effect or shift, the automated approach was useful for providing an initialization to guide the expert with identification of the specific tract of interest. CONCLUSION: We report a reliable paradigm for the automated identification of white matter pathways in patients with gliomas. This approach should enhance the neurosurgical objective of maximal safe resections. ABBREVIATIONS: AF, arcuate fasciculusDTI, diffusion tensor imagingIFOF, inferior fronto-occipital fasciculusILF, inferior longitudinal fasciculusROI, region of interestWM, white matter.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Interpretação de Imagem Assistida por Computador/métodos , Substância Branca/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fibras Nervosas Mielinizadas/patologia , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA